extension | φ:Q→Out N | d | ρ | Label | ID |
(D4×C32)⋊1S3 = He3⋊6D8 | φ: S3/C1 → S3 ⊆ Out D4×C32 | 72 | 12+ | (D4xC3^2):1S3 | 432,153 |
(D4×C32)⋊2S3 = He3⋊7D8 | φ: S3/C1 → S3 ⊆ Out D4×C32 | 72 | 6 | (D4xC3^2):2S3 | 432,192 |
(D4×C32)⋊3S3 = D4×C32⋊C6 | φ: S3/C1 → S3 ⊆ Out D4×C32 | 36 | 12+ | (D4xC3^2):3S3 | 432,360 |
(D4×C32)⋊4S3 = C62.13D6 | φ: S3/C1 → S3 ⊆ Out D4×C32 | 72 | 12- | (D4xC3^2):4S3 | 432,361 |
(D4×C32)⋊5S3 = D4×He3⋊C2 | φ: S3/C1 → S3 ⊆ Out D4×C32 | 36 | 6 | (D4xC3^2):5S3 | 432,390 |
(D4×C32)⋊6S3 = C62.16D6 | φ: S3/C1 → S3 ⊆ Out D4×C32 | 72 | 6 | (D4xC3^2):6S3 | 432,391 |
(D4×C32)⋊7S3 = C3×C32⋊7D8 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 72 | | (D4xC3^2):7S3 | 432,491 |
(D4×C32)⋊8S3 = C33⋊15D8 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 216 | | (D4xC3^2):8S3 | 432,507 |
(D4×C32)⋊9S3 = C3×D4×C3⋊S3 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 72 | | (D4xC3^2):9S3 | 432,714 |
(D4×C32)⋊10S3 = C3×C12.D6 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 72 | | (D4xC3^2):10S3 | 432,715 |
(D4×C32)⋊11S3 = D4×C33⋊C2 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 108 | | (D4xC3^2):11S3 | 432,724 |
(D4×C32)⋊12S3 = C62.100D6 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 216 | | (D4xC3^2):12S3 | 432,725 |
(D4×C32)⋊13S3 = C32×D4⋊S3 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 72 | | (D4xC3^2):13S3 | 432,475 |
(D4×C32)⋊14S3 = C32×D4⋊2S3 | φ: trivial image | 72 | | (D4xC3^2):14S3 | 432,705 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(D4×C32).1S3 = He3⋊8SD16 | φ: S3/C1 → S3 ⊆ Out D4×C32 | 72 | 12- | (D4xC3^2).1S3 | 432,152 |
(D4×C32).2S3 = Dic18⋊C6 | φ: S3/C1 → S3 ⊆ Out D4×C32 | 72 | 12- | (D4xC3^2).2S3 | 432,154 |
(D4×C32).3S3 = D36⋊C6 | φ: S3/C1 → S3 ⊆ Out D4×C32 | 72 | 12+ | (D4xC3^2).3S3 | 432,155 |
(D4×C32).4S3 = He3⋊9SD16 | φ: S3/C1 → S3 ⊆ Out D4×C32 | 72 | 6 | (D4xC3^2).4S3 | 432,193 |
(D4×C32).5S3 = D4×C9⋊C6 | φ: S3/C1 → S3 ⊆ Out D4×C32 | 36 | 12+ | (D4xC3^2).5S3 | 432,362 |
(D4×C32).6S3 = Dic18⋊2C6 | φ: S3/C1 → S3 ⊆ Out D4×C32 | 72 | 12- | (D4xC3^2).6S3 | 432,363 |
(D4×C32).7S3 = C3×D4.D9 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 72 | 4 | (D4xC3^2).7S3 | 432,148 |
(D4×C32).8S3 = C3×D4⋊D9 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 72 | 4 | (D4xC3^2).8S3 | 432,149 |
(D4×C32).9S3 = C36.17D6 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 216 | | (D4xC3^2).9S3 | 432,190 |
(D4×C32).10S3 = C36.18D6 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 216 | | (D4xC3^2).10S3 | 432,191 |
(D4×C32).11S3 = C3×D4×D9 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 72 | 4 | (D4xC3^2).11S3 | 432,356 |
(D4×C32).12S3 = C3×D4⋊2D9 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 72 | 4 | (D4xC3^2).12S3 | 432,357 |
(D4×C32).13S3 = D4×C9⋊S3 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 108 | | (D4xC3^2).13S3 | 432,388 |
(D4×C32).14S3 = C36.27D6 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 216 | | (D4xC3^2).14S3 | 432,389 |
(D4×C32).15S3 = C3×C32⋊9SD16 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 72 | | (D4xC3^2).15S3 | 432,492 |
(D4×C32).16S3 = C33⋊24SD16 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 216 | | (D4xC3^2).16S3 | 432,508 |
(D4×C32).17S3 = C32×D4.S3 | φ: S3/C3 → C2 ⊆ Out D4×C32 | 72 | | (D4xC3^2).17S3 | 432,476 |